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The structure of a hemihedrally twinned protein crystal with

two molecules in the asymmetric unit was solved by molecular

replacement. The protein, a site-speci®c mutant of the N-

terminal half-molecule of human lactoferrin, is able to

undergo an internal rigid-body domain motion. Therefore,

determining the structure required the independent posi-

tioning of four protein domains. The molecular-replacement

solutions were obtained using a conventional real-space

rotation function, and a translation function based on the

linear correlation coef®cient. Once the molecules were

positioned, it was necessary to assign them to the appropriate

twin domain. Several methods for doing this are described,

one of which leads to a determination of the volume of each

twin domain. In the appendix to the paper we discuss the

interpretation of the self-rotation function in the presence of

merohedral twinning.
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1. Introduction

A twin is a composite crystal, containing consistently mis-

oriented regions (twin domains) which are related by a

symmetry operation (twinning operation). In the case of

merohedral twinning, the diffraction patterns of the twin

domains are exactly superimposed. This kind of twinning

occurs when the twinning operations are members of the

lattice point group (holohedry) but not the crystallographic

point group (merohedry). Hemihedral twinning is a special

case of merohedral twinning in which there are only two twin

domains. Issues relating to crystal twinning in protein crys-

tallography have been recently reviewed by Yeates (1997).

Diffraction data collected from a hemihedrally twinned

crystal do not represent the true crystallographic intensities.

The observed intensities are a linear combination of the true

intensities (assuming that the size of the twin domains is large

relative to the coherence length of the X-ray beam, so that

interference effects can be neglected). Thus,

Iobs�h1� � �1ÿ ��I�h1� � �I�h2� �1a�
Iobs�h2� � �I�h1� � �1ÿ ��I�h2�; �1b�

where h1 and h2 are reciprocal-lattice vectors that are related

by the twinning operation, I(h1) and I(h2) are the true inten-

sities associated with these lattice vectors, Iobs(h1) and Iobs(h2)

are the observed intensities and � is the twin fraction (by

convention, the fractional volume of the smaller twin domain

with respect to the whole crystal, hence 0 < � < 0.5). When � is

0.50, the twin domains are of equal size and the twinning is

said to be perfect. Perfect hemihedral twinning gives rise to

higher order symmetry in the diffraction pattern than would

result from the crystal space group alone.
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When � is small, (1a) and (1b) represent a system of linear

equations that can be solved for the true crystallographic

intensities (see, for example, Britton, 1972; Igarashi et al.,

1997). However as � approaches 0.5, the system of equations

becomes degenerate and it is impossible to obtain reliable

estimates of the true intensities.

The method of molecular replacement has allowed the

determination of a number of protein and viral structures

using hemihedrally twinned crystals from which it was not

possible to recover the true intensities (see, for example,

Redinbo & Yeates, 1993; Lea & Stuart, 1995; Gomis-RuÈ th et

al., 1995). The interpretation of the cross-rotation function

calculated from a hemihedrally twinned crystal is generally

straightforward. It follows from (1a) and (1b) that the

Patterson function calculated from the observed intensities of

a hemihedrally twinned crystal is the superposition of the

Patterson functions of the two twin domains (weighted by �,

the twin fraction). Hemihedral twinning doubles the number

of apparent molecular orientations and, therefore, doubles the

number of solutions in the cross-rotation function. Assuming

that the oriented molecules can be positioned using a

conventional translation function, the problem that remains is

the correct assignment of the molecular-replacement solutions

to each of the twin domains in the crystal. We will discuss

methods for doing this when the twinning is both perfect and

imperfect.

In this paper, we describe crystals of a site-speci®c mutant

of the N-terminal half-molecule of human lactoferrin which

are hemihedrally twinned. Lactoferrin is an iron-binding

protein and a member of the transferrin family (Baker, 1994).

The molecule is divided into N-terminal and C-terminal lobes,

which have clear sequence and structural homology. Each lobe

(or half-molecule) is further sub-divided into two similarly

folded domains comprising �160 amino acids each (Fig. 1).

The iron-binding site resides in the interdomain cleft, and

opening and closing of this cleft by relative movement of the

two domains is associated with iron binding and release

(Anderson et al., 1990; Gerstein et al., 1993). Iron binding to

lactoferrin depends on the synergistic binding of a carbonate

anion in close proximity to the bound metal. In order to

facilitate the study of lactoferrin, a recombinant N-terminal

half-molecule has been constructed and characterized (Day et

al., 1992, 1993). The site-directed mutant of the N-terminal

half-molecule discussed here has Arg121, which is involved in

anion binding, mutated to Asp. We will refer to this mutant as

R121D.

2. Protein expression, crystallization and X-ray data
collection

The construction, expression and puri®cation of the R121D

site-speci®c mutant was accomplished by previously described

methods (Faber et al., 1996). Crystals were grown by micro-

dialysis of protein solution against a solution containing

0.01 M Tris±HCl buffer pH 8.0 and either 12% 2-propanol or

12% ethanol. Although the lactoferrin in the crystallization

trials contained iron, the crystals grew as colourless needles,

consistent with loss of bound iron by the protein.

Diffraction data were collected at room temperature from a

single-crystal of R121D conventionally mounted in a thin-

walled glass capillary. Data were collected on an R-AXIS II-C

system, utilizing Cu K� radiation from a Rigaku rotating-

anode generator and using a Fuji imaging plate as a detector.

Pro®le-®tted intensities were obtained from the oscillation

images with the program DENZO (Otwinowski & Minor,

1997), and the data was scaled and merged using programs

from the CCP4 program suite (Collaborative Computational

Project, Number 4, 1994).

X-ray diffraction data were indexed on a primitive lattice

with cell parameters a = b = 151.3, c = 48.6 AÊ , � = � = 90�,  =

120�. The diffraction pattern exhibits 6/m symmetry. The

systematic absences (l = 3n) along the reciprocal-space vector

00l indicated space group P62 or its enantiomorph P64.

Consequently, the initial data reduction assumed the presence

of hexagonal symmetry. However, the crystals are truly

trigonal (space group P31) with near-perfect hemihedral

twinning, giving rise to the observed 6/m symmetry in the

diffraction pattern. When this was discovered, the data were

reprocessed imposing only trigonal symmetry. Statistics

relating to the data processing are presented in Table 1.

Diffraction from crystals of the R121D mutant extends to

approximately 3 AÊ resolution.

3. Detection of twinning

Preliminary attempts at molecular replacement in space

groups P62 and P64 suggested the presence of twinning. Clear

solutions were obtained in rotation- and translation-function

calculations, but the positioned molecules signi®cantly over-

lapped (results not shown). A subsequent examination of

intensity statistics indicated that the R121D crystals were

hemihedrally twinned. Stanley has discussed the distribution

of intensity measurements in the presence of perfect hemi-

hedral twinning (Stanley, 1972). The expected value of the

Wilson ratio,

hjEji2=hjEj2i; �2�
calculated from the acentric data of single and hemihedrally

twinned crystals is 0.785 and 0.885, respectively (here E

represents the normalized structure factor). For the R121D

data, the value of the Wilson ratio (evaluated over thin

resolution shells to avoid the need for normalization) was 0.88.

With a hemihedrally twinned protein crystal, the apparent

Laue symmetry and systematic absences could only result

from space groups P31 or P32. The twinning operation is a

180� rotation around an axis parallel to the crystallographic

screw rotation (Koch, 1992). The apparent 6/m Laue

symmetry and the observed value of the Wilson ratio both

indicated that the hemihedral twinning in R121D was near-

perfect (� � 0.5).

To precisely evaluate the twin fraction �, two statistical

methods were employed. Firstly, inspection of the cumulative

distribution of the statistic H, where H is de®ned as



H � j�Iobs�h2� ÿ Iobs�h1��j=�Iobs�h2� � Iobs�h1��; �3�

allows the determination of the twin fraction of a hemihedrally

twinned crystal (Yeates, 1988). A plot of the cumulative

distribution of H for the R121D diffraction data is shown in

Fig. 2, along with the expected distributions for varying values

of �. Inspection of this ®gure suggests a twin fraction for the

crystals of �0.43.

Another statistic for evaluating the twin fraction was

suggested by Rees (1980), and is based on analysis of cumu-

lative intensity distributions. In both test calculations and

application to the actual data, this statistic failed to provide

quantitative information (results not shown). However, the

presence of hemihedral twinning was clearly indicated. This

result is in agreement with the observations of others (Gomis-

RuÈ th et al., 1995).

4. Molecular replacement

Molecular-replacement calculations

used the re®ned structure of the N-

terminal half-molecule of lactoferrin

as the search model (Day et al.,

1993). The R121D crystals were

colourless, indicating that iron was

not bound. Therefore, it was

believed that the molecules present

in the crystal might be in the open

state (Fig. 1). Analysis of the domain

closure in lactoferrin suggests stabi-

lization of the open and closed states

by close-packed interfaces (Gerstein

et al., 1993). However, in other

proteins that undergo hinged rigid-

body domain motions, multiple

conformational states have been

seen within a single crystal (Faber &

Matthews, 1990). Independent posi-

tioning of the domains was therefore

carried out as a precaution against

obtaining a partially correct mole-

cular-replacement solution. Domain

N1 consisted of residues 4±90 and

251±320, and domain N2 consisted of

residues 91±250 (Fig. 1).

4.1. The cross-rotation function

A real-space cross-rotation func-

tion was evaluated over the asym-

metric unit (Rao et al., 1980) for each

domain using the program X-PLOR

(BruÈ nger, 1993). The highest peaks

of the rotation function were used in

Patterson correlation re®nement

(BruÈ nger, 1990). Solutions were

readily found for the N2 domains;

however, solutions for the N1

domains were less clear. As

expected, each cross-rotation-func-

tion solution had a complementary

solution related by the twinning

operation. However, for each

domain there were no more than two

unique solutions.
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Figure 1
The rigid-body domain motion observed in lactoferrin. The closed (a) and open (b) states of the
N-terminal half-molecule are illustrated. The two domains that comprise the half-molecule are shown in
light and dark gray. Also shown is the position of the Fe atom in the inter-domain cleft in the closed
structure. The diagram was prepared using the program MOLSCRIPT (Kraulis, 1991), and the atomic
coordinates for the iron-bound and iron-free forms of human lactoferrin (Protein Data Bank codes
1LFG and 1LFH, respectively, Anderson et al., 1989, 1990).

Table 1
Data-processing statistics for R121D.

66 oscillation images collected from a single crystal were used in processing.

Upper resolution
limit (AÊ )

Total unique
observations Rmerge I/�(I)

Completeness
(%) Multiplicity

11.17 468 0.034 9.0 97 3.1
7.92 846 0.041 17.2 98 3.1
6.47 1135 0.057 12.4 100 3.1
5.61 1305 0.071 10.1 98 3.1
5.02 1470 0.073 10.0 98 3.1
4.58 1641 0.077 9.3 99 3.1
4.24 1784 0.087 8.3 99 3.1
3.97 1852 0.100 7.3 95 3.0
3.74 2052 0.119 6.2 99 2.8
3.55 2121 0.150 5.0 97 2.7
3.39 2155 0.179 4.3 94 2.6
3.24 2306 0.229 3.3 96 2.6
3.11 2319 0.315 2.4 93 2.4
3.00 2428 0.418 1.8 93 2.4
2.90 2469 0.522 1.4 92 2.2
Overall 26351 0.115 6.1 96 2.8
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4.2. The translation function

All translation-function calculations employed the program

BRUTE (Fujinaga & Read, 1987). In this program the linear

correlation coef®cient between observed and calculated

structure-factor amplitudes is evaluated as the oriented search

model is translated through the cell. The program was modi-

®ed so that hemihedral twinning could be explicitly accounted

for (i.e., the calculated structure-factor amplitudes were

twinned before evaluation of the correlation coef®cient). For

brevity, we refer to this as a `twinned' translation function and

the correlation coef®cient on which it is based as the `twinned'

correlation coef®cent. Additional input required for the

program was the twin fraction � and the twinning operation.

Since the N2 domains gave the clearest signal in the cross-

rotation function, these were positioned ®rst. Parallel calcu-

lations were carried out in both P31 and P32 in order to resolve

the space-group ambiguity. For comparison, both a regular

translation function and a twinned translation function were

computed. The translation function gave clearly contrasted

solutions for all four rotations in space group P31 (Table 2).

For space group P32, the maximum correlation coef®cients

were much lower for each domain, indicating that this is not

the correct space group (results not shown).

For the twinned translation function, the maximum corre-

lation coef®cient is consistently higher for each positioned

domain than in the regular translation function; however, so is

the mean of the function. In both the twinned and conven-

tional translation functions, the correct solution is equivalently

contrasted from the mean. The higher mean in the twinned

translation function is readily explained by the difference in

the expected intensity distributions from single and hemi-

hedrally twinned crystals. Thus, in this case, a translation

function that explicitly accounts for hemihedral twinning (as

suggested by Redinbo & Yeates, 1993; Yeates, 1997) did not

assist in discriminating the correct molecular-replacement

solution.

4.3. Assignment of the molecular-replacement solutions to
the correct twin domains

As discussed, the presence of hemihedral twinning

complicates the molecular-replacement problem. It is neces-

sary to correctly assign the molecular-replacement solutions to

the twin domains in the crystal. In the case of perfect hemi-

hedral twinning, with a single molecule in the asymmetric unit,

this problem does not arise (see, for example, Redinbo &

Yeates, 1993). In this case the assignment is arbitrary.

One assignment method involves examining the relative

magnitude of the correlation coef®cient in the regular trans-

lation function In our case, this immediately suggests which of

the solutions might derive from the smaller twin domain in the

crystal, and which from the larger (Table 2). This was

con®rmed by examining the behaviour of the twinned corre-

lation coef®cient as the twin fraction was varied, for each of

the four solutions (Fig. 3). Clearly, two of the solutions, which

show maxima in the correlation coef®cient at a = 0.43, belong

in the larger twin domain. Conversely, the other two solutions,

with maxima at a = 0.57, result from the smaller twin domain.

Not only does this clearly assign the molecular-replacement

solutions to the twin domains of the crystal, but it also

provides an estimate of the twin fraction of the crystal (for

further discussion, see Gomis-RuÈ th et al., 1995).

After the molecular-replacement solutions were assigned to

the correct twin domain, the two appropriate N2 domains

were positioned with respect to a common origin. Patterson

subtraction techniques (Zhang & Matthews, 1994), in which

Patterson vectors arising from the positioned molecules are

subtracted from the observed Patterson function, were then

used to clarify the rotation-function results for the N1 domain.

Again, two pairs of cross-rotation-function solutions were

obtained, with the members of each pair related by the

twinning operation. The translation function was unambig-

uous. The positioned N1 domains were assigned to the twin

domains of the crystal as described for the N2 domains.

Finally, the position of the N1 domains was determined with

respect to the common origin.

Two molecules in the asymmetric unit corresponds to an

unusually high Matthews coef®cient (5.62 AÊ 3 Daÿ1) or,

equivalently, a solvent content of approximately 78%

(Matthews, 1968). Therefore, we expected that there would be

three (Vm of 3.75 AÊ 3 Daÿ1, solvent content of 67%) or perhaps

four (Vm of 2.81 AÊ 3 Daÿ1, solvent content of 56%) molecules

Figure 2
Estimation of the twin fraction (�) by comparison of twin-related acentric
observations. The parameter H (Yeates, 1988) is a function of the
intensity measurements related by the twinning operation (equation 3);
its cumulative distribution for the R121D diffraction data is shown (solid
line). Also shown are the expected cumulative distributions for varying
values of the twin fraction (dashed lines). The strongest 44% of paired
acentric observations were used to calculate the parameter H.



in the asymmetric unit. However, using Patterson subtraction

techniques, no further cross-rotation-function solutions could

be identi®ed for either the N1 or N2 domains. The ®nal

correlation coef®cient between observed and calculated

structure-factor amplitudes is 0.65 (including all four posi-

tioned domains, and data between 8 and 3 AÊ resolution). If the

calculated structure-factor amplitudes are ®rst twinned (with

� = 0.43), the ®nal correlation coef®cient is 0.78.

The methods described here to assign each of the positioned

molecules to the twin domains in the crystal rely on � being

different from 0.5. However, even in the case of perfect

hemihedral twinning it should still be possible to solve

complicated molecular-replacement problems.

The total structure factor for each twin domain results from

the vector addition of the structure factors due to each posi-

tioned molecule in that domain. If a positioned molecule is

assigned to the incorrect twin

domain, this vector addition will be

inappropriate and the correlation

with the observed structure-factor

amplitudes should be reduced

relative to the correct assignment.

Calculations with the R121D data,

where one protein domain was

purposely placed in the wrong twin

domain, have con®rmed this idea

(results not shown). This suggests

that even in the case of perfect

hemihedral twinning, complicated

molecular-replacement problems

can be resolved. In addition, many

of the possibilities are likely to be

eliminated on the basis of simple

packing considerations.

5. Veri®cation of the model

The four positioned domains provided a physically reasonable

model for the crystal. On inspection, the positioned N1 and N2

domains were seen to form two half-molecules of lactoferrin.

Both half-molecules were in an essentially equivalent `open'

conformation, just as in the structure of intact iron-free

lactoferrin (Fig. 1). There was no overlap between symmetry-

related molecules. As noted before, the calculated solvent

content of the crystals is very high. However, the positioned

molecules form a plausible crystal lattice, with a large solvent

channel in the direction of the unique axis (Fig. 4). In the

Appendix to this paper, a general method for predicting all

peaks of the self-rotation function in the presence of mero-

hedral twinning is derived. The model accounts for all peaks in

the self-rotation function computed from the R121D diffrac-

tion data. Hence, despite the anomalously high solvent

content of the crystals, the model appeared correct.
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Table 2
Translation function for the oriented N2 domains in space group P31.

The translation function was calculated using terms from 8±4 AÊ resolution. The cross-rotation-function solutions
A and A0 are related by the twinning operation, as are the solutions B and B0. Because P31 is a polar space group,
only a two-dimensional search was needed. The translation function was computed over the region a � b, which
is larger than the region 1/3 (a ÿ b) � 1/3 (a + 2b) actually required (Hirshfeld, 1968). For each cross-rotation-
function solution there was only a single signi®cant peak in the translation function (taking into account the
space-group symmetry operations and alternative origin choices). Note that the same translation vector gives
rise to the maximum correlation coef®cient in both functions. For calculation of the twinned translation
function, a twin fraction � = 0.40 was assumed.

Regular translation function Twinned translation function

Rotation-
function
solution

Maximum
CC

Mean of
function

Standard
deviation
of function

Maximum
CC

Mean of
function

Standard
deviation
of function

A 0.150 0.059 0.010 0.217 0.087 0.012
A0 0.191 0.075 0.010 0.233 0.091 0.013
B 0.151 0.065 0.009 0.226 0.096 0.013
B0 0.194 0.083 0.010 0.235 0.101 0.013

Figure 3
Behaviour of the correlation coef®cient as a function of the twin fraction
� for the positioned N2 domains of lactoferrin. The four molecular-
replacement solutions can be divided into two pairs (A and B). The
solutions A and A0 are related by the twinning operation as are the
solutions B and B0. For each solution, the twinned correlation coef®cient
was evaluated for values of � between 0.30 and 0.70.

Figure 4
A diagram illustrating the molecular packing in the R121D crystals. A
view down the unique axis of the trigonal crystals is shown. The two N-
terminal half-molecules of lactoferrin found in the crystallographic
asymmetric unit are represented in light and dark gray, respectively. They
are related by a 37� rotation almost exactly about z. Also shown are the
symmetry elements of space group P31.
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The structure has now been successfully re®ned (G. B.

Jameson, manuscript in preparation) using the program

SHELXL (Sheldrick & Schneider, 1997). This program

implements a method to re®ne twinned crystal structures

(Pratt et al., 1971; Jameson, 1982). Interactive model building

was carried out with the program TURBO-FRODO (A.

Roussel, A. G. Inisan and C. Cambillau). The initial model

contained residues 4±320. Re®nement began with values for R

and Rfree of 0.33, which decreased to 0.25 on introduction of a

parameter describing the twin fraction. The ®rst electron-

density map revealed the entire C-terminal helix (residues

321±332), which was missing in the structure of the iron-bound

half-molecule (Day et al., 1993). The current state of the

re®nement is summarized in Table 3.

6. Summary

We have discussed the molecular-replacement solution of a

hemihedrally twinned crystal, in which multiple protein

domains were positioned in the asymmetric unit. The principal

problem encountered was the assignment of the positioned

molecules to the twin domains in the crystal.

Firstly, we consider the case where the twinning is imper-

fect. The relative height of peaks in the cross-rotation function

cannot be used to reliably assign these peaks to the twin

domains in the crystal (the overlap of self- and cross-vectors in

the Patterson function prevents this). If translation-function

solutions can be obtained, then they can be assigned to the

larger or smaller twin domains in the crystal using the

magnitude of the correlation coef®cient between the observed

and calculated structure factors. Additionally, the behaviour

of the twinned correlation coef®cient as a function of the twin

fraction will clearly assign the molecular-replacement solu-

tions to the appropriate twin domain. This also serves to give

an estimate of the twin fraction of the crystal consistent with

the method of Yeates (1988).

Finally, even in the case of perfect hemihedral twinning, it

should still be possible to solve complicated molecular-repla-

cement problems. This can be performed by examining the

behaviour of the correlation coef®cient as the positioned

fragments are systematically permuted among the twin

domains.

APPENDIX A
Interpretation of the self-rotation function in the
presence of merohedral twinning

The self-rotation function can be used to detect non-crystal-

lographic rotational symmetry (Rossmann & Blow, 1962). It is

de®ned as the angular auto-correlation function of the

Patterson synthesis. Here we consider the implications of

merohedral twinning for the interpretation of the self-rotation

function.

There is a direct correspondence between the symmetry and

orientation of the molecules in a crystal and the intramole-

cular Patterson vectors (self-vectors). Hence, the problem of

predicting all peaks of the rotation function reduces to ®nding

the set of all rotations that leave a molecule invariant or rotate

it into the orientation of another molecule in the crystal. For

ordinary crystals, a general method to predict all peaks of the

self-rotation function has been described by Litvin (1975,

1987). The peaks of the self-rotation function are expressed in

terms of the rotational operations of the crystal space group

and the point-group symmetry and orientation of the mole-

cules in the asymmetric unit of the crystal.

We extend this method to crystals exhibiting merohedral

twinning. Subsequently, we use this result to account for the

observed peaks in the self-rotation function calculated from

the R121D diffraction data.

A1. The self-rotation function in the absence of twinning

First, we restate Litvin's result, adopting a slightly differing

notation for clarity. We consider a crystal made up of identical

protein motifs. In this sense, a motif may refer to a single

polypeptide or an assembly of distinct polypeptides (e.g. an

oligomeric protein or a viral capsid). Let P denote the point-

group symmetry of the protein motif (noting that the motif

may possess no symmetry other than the identity operation).

Let r be a vector corresponding to the centre of mass of a

motif (for protein motifs possessing dihedral or cubic point-

group symmetry, the centre of mass of the motif will corre-

spond to the point-group centre).

In the asymmetric unit of the crystal, we have vectors

corresponding to the centre of mass of q protein motifs. We

can denote these vectors as r11, r12, ..., r1q (the ®rst subscript

Table 3
Re®nement statistics.

Resolution (AÊ ) 20±3.0
Re®nement program SHELXL-97
Re®nement protocol Conjugate-gradient least-

squares minimization
R 0.150
Rfree² 0.191
Twin fraction 0.442
Number of parameters 20321
Number of restraints 27728
RMSD bond distances (target)

(AÊ )³
0.005 (0.010)

RMSD 1±3 distances (target)
(AÊ )³ (bond-angle restraint)

0.016 (0.020)

NCS restraint targets³
RMSD B values (AÊ 2) 4
RMSD 1±4 distances (AÊ )
(torsion-angle restraint)

0.02

Ramachandran plot§
Most allowed (%) 82.0
Allowed (%) 16.9
Generously allowed (%) 0.5
Disallowed (%) 0.4

² The data set aside for calculation of Rfree includes, for each randomly selected
re¯ection, its twin-related re¯ection. ³ The target root-mean-square deviations
(RMSD) from ideal values are used in the weighting of restraints in least-squares
calculations. Restraints on bond and torsion angles are imposed by restraining non-
bonded distances. Ideal values are derived from the geometry library of Engh & Huber
(1991). Non-crystallographic symmetry (NCS) restraints were applied to the torsion
angles of NCS-related molecules and to the B values of NCS-related atoms. Within a
molecule, each atom has an individual isotropic B value. Tight restraints were imposed on
the differences in the B values of bonded atoms. § The allowed regions of the
Ramachandran plot were de®ned by the program PROCHECK (Laskowski et al.,
1993).



indicates that the vectors are found in the selected asymmetric

unit of the crystal, the second subscript discriminates between

the motifs within the asymmetric unit). For each motif, we

denote its corresponding orientation as M11, M12, ..., M1q. We

denote the elements of the point group of each motif as {P11},

{P12}, ..., {P1q}.

Let R denote the point group of the crystal space group. The

members of this group, the n rotational operators of the space

group, are the matrices [R1], [R2], ..., [Rn].

We consider the case where r11, r12, ..., r1q are general

position vectors of the space group. We can generate all the

possible orientations of the protein motif in the crystal using

[R1], [R2], ..., [Rn], the rotational operators of the space group.

We have, for ( j = 1, ..., n), (� = 1, ..., q),

�Rj�M1� � Mj�:

Note that these (q � n) orientations are not necessarily

distinct.

In addition, we de®ne for all � = 1, ..., q a rotation [N�] such

that

�N��M11 � M1�:

These rotations map the ®rst motif in the asymmetric unit into

the orientation of the q other equivalent motifs.

It was shown by Litvin (1975) that the peaks of the self-

rotation function correspond to the distinct rotations

contained in the set of rotations

fS�j�; k��g � �Rk��N��fP11g��Rj��N���ÿ1

for (j, k = 1, ..., n), (�, � = 1, ..., q) and every element of the

point group {P11}.

The rotational operators of the space group are de®ned in

terms of the crystallographic basis vectors, which are not in

general orthogonal. In practice, all the rotations are most

conveniently de®ned with respect to some orthonormal basis.

Thus, if [OM] is the transformation from the crystallographic

to the orthonormal frame, we can write

fS�j�; k��g � �OM��Rk��OM�ÿ1�N��fP11g
� ��OM��Rj��OM�ÿ1�N���ÿ1: �4�

A2. The self-rotation function in the presence of merohedral
twinning

It is straightforward to extend this result to account for the

presence of merohedral twinning. For a merohedrally twinned

crystal with m independent twin domains, we denote the

rotational operations relating the twin domains as [T1], [T2], ...,

[Tm]. The ®rst matrix, [T1], is the identity operation. To denote

the orientation of the motifs in the crystal we add a third

subscript, which indicates the twin domain. Hence, we have for

all j = (1, ..., n), � = (1, ..., q), u = (1, ..., m),

�N��M111 � M1�1

�Rj�M1�1 � Mj�1

�Tu�Mj�1 � Mj�u:

It follows that

M111 � ��Tu��Rj��N���ÿ1
Mj�u:

We need to determine the set of rotations which will transform

the orientation Mj�u into the orientation Mk�v. The unique

rotations in this set of rotations comprise the predicted peaks

of the self-rotation function.

The set of rotations �Tv��Rk��N��fP111g��Tu��Rj��N���ÿ1

clearly satis®es this condition, since

�Tv��RK��N��fP111g��Tu��Rj��N���ÿ1
Mj�u

� �Tv��Rk��N��fP111gM111

� �Tv��Rk��N��M111

� Mk�v:

Now we show that all rotations that satisfy this condition are

members of the set f�Tv��Rk��N��fP111g ��Tu��Rj��N���ÿ1g:
Let �S�j�u; k�v�� denote the rotation which will transform

the orientation Mj�u into the orientation Mk�v.

�S�j�u; k�v��Mj�u � Mk�v

�S�j�u; k�v���Tu��Rj��N��M111 � �Tv��Rk��N��M111

��Tv��Rk��N���ÿ1�S�j�u; k�v���Tu��Rj��N��M111 � M111:

��Tv��Rk��N���ÿ1�S�j�u; k�v���Tu��Rj��N�� is an element of the

point group {P111}, since it leaves M111 invariant. Therefore,

for some element [P111] of {P111},

��Tv��Rk��N���ÿ1�S�j�u; k�v���Tu��Rj��N�� � �P111�
�S�j�u; k�v�� � �Tv��Rk��N���P111���Tu��Rj��N���ÿ1:

Consequently, all the peaks of the self-rotation function are

members of the set

fS�j�u; k�v�g � �Tv��Rk��N��fP111g��Tu��Rj��N���ÿ1

for (j, k = 1, ..., n), (�, � = 1, ..., q), (u, v = 1, ..., m) and every

element of the point group {P111}.

Again, considering that the rotational operators of the

space group and the operations which relate the twin domains

need to be applied in the orthonormal frame, we can write this

expression as

fS�j�u; k�v�g � �OM��Tv��Rk��OM�ÿ1�N��fP111g
� ��OM��Tu��Rj��OM�ÿ1�N���ÿ1: �5�

A3. Application to R121D

We now apply the expression derived above to interpret the

self-rotation function calculated from the R121D diffraction

data. There are two molecules in the asymmetric unit of the

crystal. The molecules are in an essentially identical confor-

mation (despite the potential for rigid-body domain motion

within the molecule) and thus we can treat them as equivalent.

The orthonormal frame in which the rotations are described

has the Cartesian X axis coincident with a, and the Cartesian Z

axis coincident with (a � b) (or c*, in the convention

employed by the Protein Data Bank). The matrices that
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convert between the crystallographic and orthonormal frame

(see Giacovazzo, 1992) are

OM �
151:300000 ÿ75:650000 0:000000

0:000000 131:029643 0:000000

0:000000 0:000000 48:600000

0B@
1CA;

OMÿ1 �
0:006609 0:003816 0:000000

0:000000 0:007632 0:000000

0:000000 0:000000 0:020576

0B@
1CA:

The molecule does not possess any internal symmetry. Thus,

the point group of the motif has only a single element, the

identity operation:

fP111g �
1 0 0

0 1 0

0 0 1

0@ 1A:
The three rotational operators of the space group P31 (in the

crystallographic frame) are

R1 �
1 0 0

0 1 0

0 0 1

0B@
1CA;

R2 �
0 ÿ1 0

1 ÿ1 0

0 0 1

0B@
1CA;

R3 �
ÿ1 1 0

ÿ1 0 0

0 0 1

0B@
1CA:

There are two twin domains in the crystal, and the matrices

which de®ne the rotational relationship between them (in the

crystallographic frame) are

T1 �
1 0 0

0 1 0

0 0 1

0B@
1CA;

T2 �
ÿ1 0 0

0 ÿ1 0

0 0 1

0B@
1CA:

Finally, the rotations which map the distinct copies of the

motif in the asymmetric unit into one another are

N1 �
1 0 0

0 1 0

0 0 1

0B@
1CA;

N2 �
0:80272 ÿ0:59617 0:01510

0:59627 0:80191 ÿ0:03727

0:01011 0:03892 0:99919

0B@
1CA:

The peaks of the self-rotation function predicted using (4) are

presented in Table 4. Over all rotation space, a total of 18

peaks are predicted, and all of these correspond to rotations

approximately about the direction Z. A one-dimensional plot

of the R121D self-rotation function for rotations about this

axis is presented in Fig. 5(a). The peaks of the self-rotation

function predicted on the basis of the model are clearly seen in

this plot.

In order to fully validate the model, it remains to show that

there are no other signi®cant peaks in the self-rotation func-

tion. In fact this is not the case, and there are several strong

peaks corresponding to apparent twofold rotations perpen-

dicular to the principal axis of the crystal (Fig. 5b). In terms of

absolute magnitude, these peaks are larger than those

Figure 5
(a) A one-dimensional plot of the R121D self-rotation function for all
rotations about the direction of the unique crystal axis (', = 90�). (b) A
stereographic projection of the R121D self-rotation function for all
rotations with � = 180�. Positions of the apparent twofold rotations
perpendicular to the principal axis are indicated by the solid arrows. In
both cases, the self-rotation function was calculated by the reciprocal-
space method of Rossmann & Blow (1962) using the program GLRF
(Tong & Rossmann, 1990). A spherical radius of integration of 25 AÊ was
employed, and diffraction data between 10 and 3 AÊ resolution were used
in the calculation.



predicted on the basis of the model. While these peaks cannot

be predicted by the expression developed above, they are

reproduced in a self-rotation function computed from the

model structure factors (whether or not they are twinned).

Problems in the interpretation of the self-rotation function

have arisen from the confusion of the packing symmetry of

particles with the symmetry of the particles themselves (see

AÊ kerval et al., 1971; Klug, 1971; Litvin, 1975, 1987) or the

inability to resolve closely situated rotation-function peaks

(see, for example, Muckelbauer et al., 1995). In some cases, the

peaks in the self-rotation function are poorly de®ned, despite

the presence of non-crystallographic symmetry (Jones et al.,

1991). The unassigned peaks in the R121D self-rotation

function present a problem of a different kind.

At this stage, we cannot identify the origin of these peaks.

They are clearly not due to superposition of sets of self-vectors

in the conventional sense, since they do not correspond to any

simple rotation between the molecular orientations in the

crystal. The most plausible hypothesis at this time is that they

arise from a combination of the inversion symmetry of the

Patterson function (which reduces to twofold rotational

symmetry on planes passing through the origin) and the

special packing arrangement found in the crystals. In support

of this idea, the self-rotation functions of other molecules

found in similar space groups with a high solvent content also

display such peaks. A particularly good example is sperm-

whale myoglobin crystallized in space group P6 (Phillips et al.,

1990). Myoglobin has no internal

symmetry, and in this crystal form

there is only one molecule in the

asymmetric unit. However, in the

self-rotation function there are a

number of apparent twofold

rotations perpendicular to the

principal axis (results not shown).

The solvent content of this crystal

is 62% and there are large solvent

channels in the crystal in the

direction of the principal axis just

as for R121D.
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